

QUICKSWITCH® PRODUCTS HIGH-PERFORMANCE CMOS TWO CHANNEL SP4T MUX/DEMUX

IDTQS4A210

FEATURES:

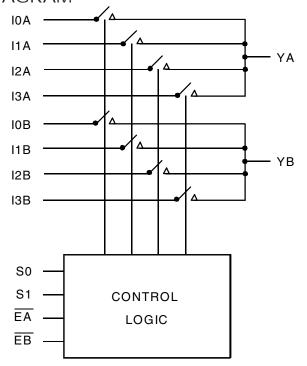
- Low ON resistance: $rDS(ON) = 5\Omega$
- Fast transition time: ttran = 6ns
- · Wide bandwidth: 700MHz (-3dB point)
- · Crosstalk: -110dB at 50KHz, -68dB at 5MHz, -66dB at 30MHz
- · Off-isolation: -90dB at 50KHz, -60dB at 5MHz, -50dB at 30MHz
- · Single 5V supply
- · Can be used as multiplexer or demultiplexer
- · TTL-compatible control inputs
- Ultra-low quiescent current: 3µA
- · Available in QSOP package

APPLICATIONS:

- · High-speed video signal switching/routing
- · HDTV-quality video signal multiplexing
- · Audio signal switching/routing
- · Data acquisition
- ATE systems
- Telecomm routing
- · Switch between multiple video sources
- · Token Ring transceivers
- · High-speed networking

DESCRIPTION:

The QS4A210 is a high-performance CMOS two-channel SP4T multiplexer/demultiplexer with individual enables. The low On-resistance of the QS4A210 allows inputs to be connected to outputs with low insertion loss and high bandwidth. TTL-compatible control circuitry with "Break-Before-Make" feature prevents contention.

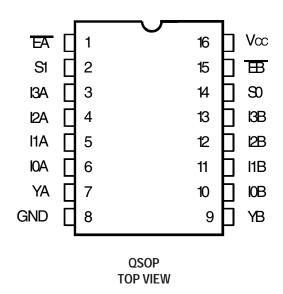

The QS4A210 with 700MHz bandwidth makes it ideal for high-performance video signal switching, audio signal switching, and telecomrouting applications. Low power dissipation makes this device ideal for battery operated and remote instrumentation applications.

The QS4A210 is offered in the QSOP package which has several advantages over conventional packages such as PDIP and SOIC, including:

- Reduced signal delays due to denser component packaging on circuit boards
- Reduced system noise due to less pin inductance, resulting in lower ground bounce

The QS4A210 is characterized for operation at -40°C to +85°C.

FUNCTIONAL BLOCK DIAGRAM



The IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

AUGUST 2000

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description Max			
VTERM ⁽²⁾	Supply Voltage to Ground	-0.5 to +7	V	
VTERM ⁽³⁾	DC Switch Voltage Vs	-0.5 to +7	V	
_	Analog Input Voltage	-0.5 to +7	V	
VTERM ⁽³⁾	DC Input Voltage ViN	-0.5 to +7	V	
VAC	AC Input Voltage (pulse width ≤20ns)	-3	V	
lout	DC Output Current	120	mA	
Рмах	Maximum Power Dissipation	0.7	W	
Tstg	Storage Temperature	-65 to +150	°C	

NOTES:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. All terminals except Vcc .

PIN DESCRIPTION

Pin Names I/O Description		Description
IxA	I/O	Demux Port A
IxB	I/O	Demux Port B
EA, EB	I	Enable Inputs
S0, S1	I	Select Inputs
YA, YB	I/O	Mux Port A, B

FUNCTION TABLE(1)

Enable		Select		Mux/Demux		
				Ports		
ĒΑ	ĒΒ	S ₁	S ₀	YA	YB	Function
Н	Χ	Χ	Χ	Z	Χ	Disable A
Х	Η	Χ	Χ	Χ	Z	Disable B
L	L	L	L	10A	10B	S1 - 0 = 0
L	L	L	Н	11A	11B	S1 - 0 = 1
L	L	Н	L	12A	12B	S1 - 0 = 2
L	L	Н	Н	13A	13B	S1 - 0 = 3

NOTE:

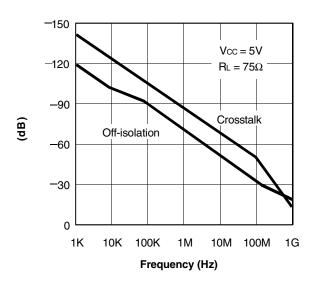
- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - X = Don't Care
 - Z = High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Industrial: TA = -40° C to $+85^{\circ}$ C. VCC = $5V \pm 5\%$

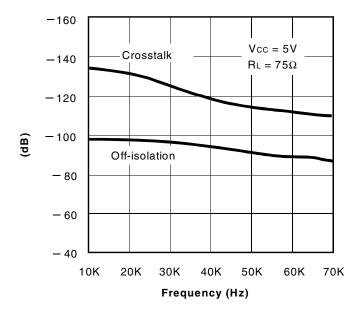
Symbol	Parameter	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Analog Si	vitch	·				
VIN	Analog Signal Range ⁽²⁾		-0.5	1	Vcc - 1	V
rds(on)	Drain-source ON resistance ^(2,3)	Vcc = Min., VIN = 0V, ION = 30mA		5	7	Ω
		Vcc = Min., Vin = 2.4V, Ion = 15mA	_	13	Vcc - 1 7 17 — 0.8 6.6 6 250 — — — — — — — — — — — — — — — — — — —	
IC(OFF)	Channel Off Leakage Current	In = Vcc or 0V; Yn = 0V or Vcc; $\overline{EA} = \overline{EB} = Vcc$		2	_	nA
Ic(on)	Channel On Leakage Current	$I_N = Y_N = 0V$		2	_	nA
		(each channel is turned on sequentially)				
Digital Co	ntrol					
ViH	Input HIGH Voltage	Guaranteed Logic HIGH for Control Pins	2	_	_	V
VIL	Input LOW Voltage	Guaranteed Logic LOW for Control Pins		_	0.8	V
Dynamic (Characteristics	•				
ttrans	Switching Time of Mux	RL = 1KΩ, CL = 100pF	0.5	_	6.6	ns
	Sx to Y	(See Transition Time)				
ton(E N)	Enable Turn-On Time	RL = 1KΩ, CL = 100pF	0.5	_	6	ns
	$\overline{EA} = \overline{EB}$ to Y	(See Switching Time)				
toff(EN)	Enable Turn-Off Time	RL = $1K\Omega$, CL = $100pF$	0.5	_	6	ns
` ′	$\overline{EA} = \overline{EB}$ to Y	(See Switching Time)				
t PD	Group Delay ^(2,4)	RL = 1KΩ, CL = 100pF		_	250	ps
f3dB	-3dB Bandwidth	$VIN = 1Vp-p, RL = 75\Omega$	_	700	_	MHz
	Off-isolation	$VIN = 1Vp-p, RL = 75\Omega, f = 5.5MHz$		-60	_	dB
Xtalk	Crosstalk	$VIN = 1Vp-p, RL = 75\Omega, f = 5.5MHz$	_	-68	_	dB
CMUX(OFF)	Mux Off Capacitance	$\overline{EA} = \overline{EB} = Vcc$, $Vin = Vout = 0V$	_	5.6	_	pF
CDEMUX(OFF)	Demux Off Capacitance	$\overline{EA} = \overline{EB} = Vcc$, $Vin = Vout = 0V$		7.4	_	pF
CMUX(ON)	Mux On Capacitance	$\overline{EA} = \overline{EB} = 0V, Vin = Vout = 0V$		12	_	pF
CDEMUX(ON)	Demux On Capacitance	$\overline{EA} = \overline{EB} = OV$, $VIN = VOUT = OV$		15	_	pF
Qcı	Charge Injection			1.5	_	рС


NOTES:

- 1. Typical values are at Vcc = 5.0V, TA = 25°C.
- 2. Max value is guaranteed but not production tested.
- 3. Measured by voltage drop between A and C pins or B and D pins at indicated current through the switch. ON resistance is determined by the lower of the voltages on the two (I, Y) pins.
- 4. The bus switch contributes no group delay other than the RC delay of the ON resistance of the switch and load capacitance. Group delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

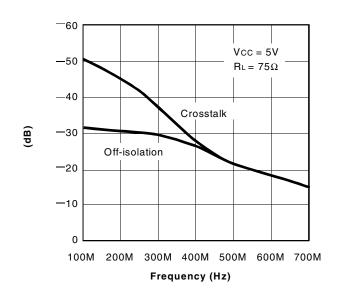
POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions		Unit
Icco	Quiescent Power	Vcc = Max., Vin = GND or Vcc, f = 0	3	μA


TYPICAL CHARACTERISTICS

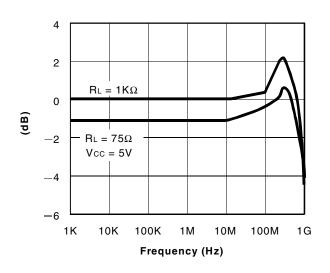
Off-isolation and Crosstalk vs. Frequency

NOTES:


- 1. Crosstalk = 20 log |Vo/Vs|
- 2. Off-isolation = 20 log |Vo/Vs|

Off-isolation and Crosstalk vs. Frequency

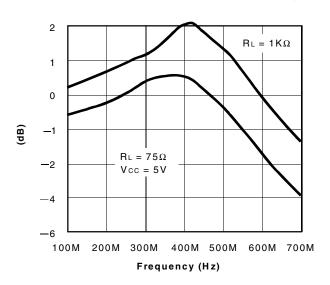
NOTES:


- 1. Crosstalk = 20 log |Vo/Vs|
- 2. Off-isolation = 20 log |Vo/Vs|

Off-isolation and Crosstalk vs. Frequency

NOTES:

- 1. Crosstalk = 20 log |Vo/Vs|
- 2. Off-isolation = 20 log |Vo/Vs|



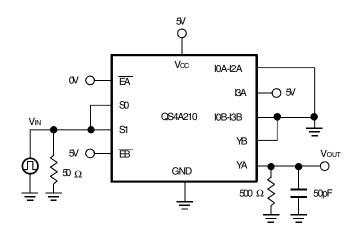
Insertion Loss vs. Frequency

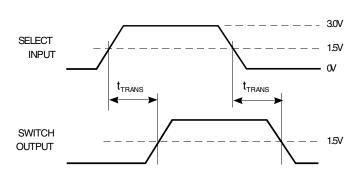
NOTE:

1. Insertion Loss = 20 log |Vo/Vs|

TYPICAL CHARACTERISTICS (CONTINUED)

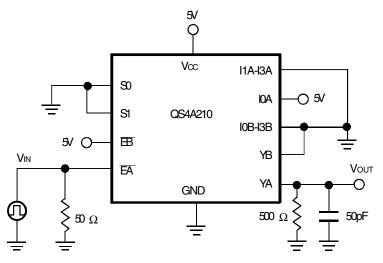
Insertion Loss vs. Frequency

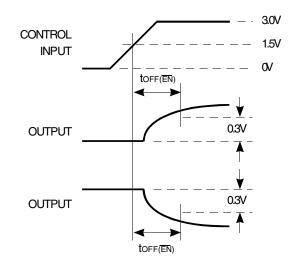

NOTE: 1. Insertion Loss = 20 log |Vo/Vs|

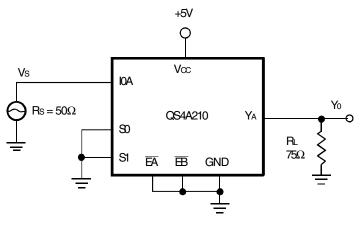


On-Resistance vs. VIN

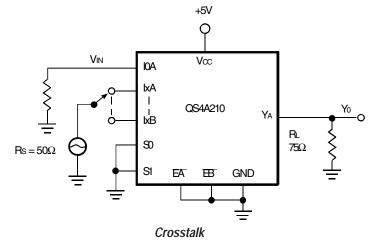
Ron LINK


TEST CIRCUITS



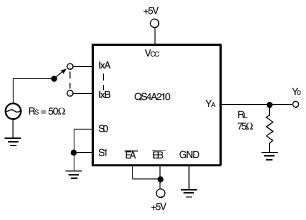

Transition Time

TEST CIRCUITS (CONTINUED)



Enable Switching Time

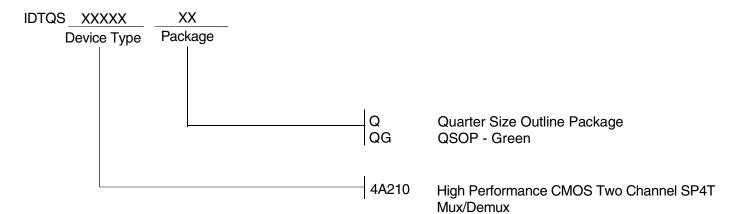
Insertion Loss



NOTE:

1. Crosstalk = 20 log |Vo/Vs|

1. Insertion Loss = 20 log |Vo/Vs|



Off-Isolation

NOTE:

1. Off-isolation = 20 log |Vo/Vs|

ORDERING INFORMATION

6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200

800-345-7015 or 408-284-820 fax: 408-284-2775 www.idt.com

for Tech Support: logichelp@idt.com